Public Health Reports

Vol. 61 - MARCH 29, 1946 - No. 13

Printed With the Approval of the Bureau of the Budget as Required by Rule 42 of the Joint Committee on Printing

CEREBROSPINAL MENINGITIS

A CHRONOLOGICAL RECORD OF REPORTED CASES AND DEATHS

By Mary Gover, Statistician, and Glee Jackson, Senior Statistical Clerk, United States Public Health Service

The reported incidence of meningococcus meningitis in the United States reached a record high in 1943, followed by an almost equally high level in 1944. During the current and three prior epidemics of meningococcus meningitis which have been recorded for this country, the reported case rate was 7.5 in 1918, 9.6 in 1929, 5.5 in 1936, and 14.1 per 100,000 in 1943.

Although epidemics of meningitis are not limited to wartime they are known to accompany war and the mobilization of troops. Reports of outbreaks in the United States are recorded in histories of the War of 1812, the Mexican War, and the Civil War. United States Army records (12) show that "the incidence rate in the Army increased noticeably in 1907 at the time of the Cuban occupation, in 1913 during the mobilization on the Mexican border, and again in 1917 and 1942 when the United States entered the first and second World Wars."

The annual number of deaths from cerebrospinal meningitis is not large; during the past decade, 1930-39, the number in the United States was approximately the same as from scarlet fever, less than from measles, whooping cough, or diphtheria, and more than those caused by poliomyelitis. ${ }^{2}$ The current epidemic is relatively high judged by

\footnotetext{
${ }^{1}$ From the Division of Public Health Methods.
${ }^{2}$ Numbar of deaths in the 10-year period, 1930-39, reported in the Registration Area as due to the following causes:

10-year period	Measles	Scarlet fever	Whooping cough	Diphtheria	Poliomyelitis	Cerebrospinal (meningococcus) meningitis
	Number of deaths					
1930-39.....	30,281	21,670	47,875	40,230	10,484	21,246

the number of reported cases, 3,356 in 1942 and 16,491 in 1943 contrasted with 10,212 cases in 1929 (40 States). The number of deaths from meningococcus meningitis during 1943, however, was only 2,621 compared with 5,651 in 1929 (40 States), the use of sulfonamide drugs having greatly reduced the fatality of the disease. The prophylactic use of sulfonamide drugs has also proved effective in the reduction of carriers and the prevention of cases in Army camps.

Hirsh (4), from a study of medical literature, and Bruce-Low (1), from statistical reports of cases and deaths, have traced the occurrence of epidemic meningitis from about 1805 to 1915 throughout the world. The years 1915 to 1930 include two major epidemics in the United States; one in 1917-18 associated with World War I, and a later epidemic rise which reached its peak in 1929. Hedrich (3), has summarized the reported cases and deaths for this period in the United States and foreign countries reporting numbers of current cases of communicable disease to the League of Nations.

Reported cases of cerebrospinal meningitis.-Cases of cerebrospinal meningitis in the United States are reported by physicians either directly to State health departments, or through local health officers. In all except eight ${ }^{3}$ of the States meningitis (epidemic cerebrospinal) has been reportable by law since 1919 or earlier, and in all States since 1932 (2). Moreover, all State health departments, since approximately 1915 or earlier, have maintained laboratories and provided clinical and diagnostic service to private physicians and local health officers (8). To what extent a diagnosis of meningococcus meningitis is confirmed by a laboratory report is unknown and undoubtedly varies throughout the different States.

Since 1913 a varying number of State health departments have forwarded monthly reports of cases and deaths from communicable disease to the United States Public Health Service (15); 20 States reported in 1913, and all States reported from 1928 on. It has been possible to select 40 States which have furnished continuous reports of cerebrospinal meningitis from 1926 on, and to compute rates for an expanding number of States from 1916 to 1925 (see table 2, footnote 1).

Classification of deaths from meningitis.-Cerebrospinal meningitis has been recorded as a cause of death in this country since approximately 1870 and occurs in the State records of New York and Massachusetts, for example. Howard (5) records deaths from cerebrospinal meningitis for Baltimore from 1872 and states that prior to that time "meningitis" of various types was probably classified for the most part under such indefinite headings as inflammation of the brain, dropsy of the brain, and convulsions." Since 1900 deaths

[^0]have been classified according to the International List of Causes of Death.

The International List has undergone five revisions but no changes of consequence have occurred in the method of distributing deaths from meningitis until the 1938 revision (18). However, there has been some obscurity in the classification of deaths from meningitis and therefore the procedure will be given in more or less detail. Related titles for meningitis through all International List revisions are given in footnote 1 to table 1.

Tuberculous meningitis has always been a separate International List title grouped with tuberculosis of specified organs. According to the 1900 classification, only two groups of meningitis other than tuberculous meningitis were tabulated, namely, a total of meningitis and a subdivision or "epidemic cerebrospinal meningitis." Simple meningitis, tabulated separately since the 1909 revision, comprises meningitis not recorded as cerebrospinal or stated to be due to some organism other than the meningococcus. This group includes such diagnoses as pneumococcic, streptococcic, or purulent meningitis, and also meningitis unqualified. Cerebrospinal meningitis, according to the 1909 , 1920, and 1929 revisions, was roughly divided into epidemic and nonepidemic categories designated as (a) cerebrospinal fever, meningococcus meningitis or epidemic cerebrospinal meningitis, and as (b) cerebrospinal meningitis, undefined, or nonepidemic cerebrospinal meningitis, in the three revisions, respectively. In the above three revisions cerebrospinal meningitis, unqualified, was classified as nonepidemic cerebrospinal meningitis. Cerebrospinal meningitis in the 1938 revision is subdivided as due or not due to the meningococcus; cerebrospinal meningitis unqualified being classified with meningococcus meningitis. Other items of less importance numerically have also been transferred to meningococcus meningitis. For convenience, in this study, the two subdivisions of cerebrospinal meningitis have been called (a) cerebrospinal (meningococcus) meningitis and (b) cerebrospinal meningitis not due to meningococcus.

A tabulation made by the Division of Vital Statistics, Bureau of the Census (14), of deaths in 1940 according to both the 1938 and 1929 revisions shows 694 deaths attributed to cerebrospinal (meningococcus) meningitis when classified by the 1938 revision and 582 by the 1929 revision. The transfer of terms from one International List title to another amounts to an increase of 19.2 percent in the rate for cerebrospinal (meningococcus) meningitis according to the 1938 revision compared with the rate based on the prior classification. Data from the Bureau of the Census show that 98.5 percent comparability in classification can be obtained if the two subdivisions of cerebrospinal meningitis in the 1929 and earlier revisions are combined for comparison with cerebrospinal (meningococcus) meningitis in the 1938 revision.

Table: 1.-Mortality from meningitis ${ }^{1}$ in the Death Registration States of the United States, 1900-48

Year	Tuberculous meningitis	Simple meningitis	Cerebrospinal meningitis			Year	Tuberculous gitis	Simple meningitis	Cerebrospinal meningitis		
			Total	Men: ingococcus	Not due to men-ingococcus				Total	Men-ingococcus	Not due to men-ingococcus
	Death rate per 100,000						Death rate per 100,000				
1900...-	9.43	33.77	6.82			1922.	4.35	2.67	1.86	0.94	0.92
1901....	9.10	27.11	5.85			1923.	4.07	2.69	2.05	1.05	1.00
1902.--	9.20	24.48	5.34			1924	3.96	2.53	1.71	. 95	. 76
1903....	9.56	21.90	6.04			1925	3.60	2.57	1.74	1.05	. 69
1904...-	9.79	21.45	12.66			1926.	3.58	2.36	1.99	1.33	. 66
1905	9.86	18.49	20.39			1927.	3.23	2.21	2.14	1.56	. 58
1906	9.85	15.94	8.48			1928.	2.99	2.27	3.12	2.55	. 57
1807-..-	9.77	15.52	8.59			1929...	2.66	2.37	5.17	4. 48	. 69
1908...-	9.39	12.90	4.68			1930...	2. 52	2.08	4.03	3.56	. 47
1909....	9.15	10.88	4.35			1931.	2.26	1.95	2.73	2.37	. 36
1910...-	8.82	9.88	4.16	0.35	3.81	1932---	1. 92	1.68	1.66	1.39	. 27
1911.-.--	9.01	7.88	4.19	. 79	3.40	1933..	1. 76	1.68	1.42	1.18	. 24
1912...-	8.50	6. 25	4.76	2.00	2.76	1934-.-	1.67	1.66	1.22	1.01	. 21
1913.-.-	8.74	5.83	4.36	1.58	2.78	1935...-	1.54	1.84	2.42	2.09	. 33
1914.	8.22	4.95	3.91	1.66	2.25	1936.	1.44	1.98	2.68	2.36	. 32
1915...-	8.09	4. 24	3.24	1. 42	1.82	1937...	1.28	1.83	2.02	1.71	. 31
1916...-	7.91	3.56	3.48	2.12	1.36	1938.-.	1.28	1.73	. 98	. 79	. 19
1917.-	8.00	3.57	5.09	3. 53	1.56	1939...	1.12	1.58	. 72	. 66	. 06
1918.	7.28	3.92	5.26	2.86	2.40	1940...	. 99	1.65	. 59	. 53	. 06
1919...-	6.14	3.06	3.40	1.81	1.59	1941...-	1.01	1.60	. 59	. 54	. 05
1920-..-	5.60	3.01	2. 98	1.62	1.36	1942.-	. 91	1.64	. 78	. 73	. 05
1921..	4.79	3.00	2.52	1.44	1.08	1943	. 87	1.89	2.24	2.18	. 06

${ }^{1}$ Related titles for meningitis through all International List revisions:

International List title	Tabulated for the years-				
	1900-09	1910-20	1921-29	1930-38	1939
	International List number				
Tuberculous meningitis. Simple meningitis	$\begin{aligned} & 28 \\ & 61 \text { (pt. 1) } \\ & 61 \text { (nt. 2) } \end{aligned}$	301 (1)	71 (a)	24 (a)	$14 \text { (a) }$
Simple meningitis. Cerebrospinal meningitis, total					
Meningococcus Not due to meningococcus		$\begin{aligned} & 61 \text { (3) } \\ & 61 \text { (2) } \end{aligned}$	$71 \text { (b) }$	$\begin{aligned} & 18 \\ & 79 \\ & \text { (b) } \end{aligned}$	$81 \text { (b) }$

FIGURE 1.-Thécourséof meningitis_ in_the_United States, for all subdivisions_of the_International Lata, 1910-43.

A tabulation change which affects urban and rural comparisons of mortality is allocation of deaths to place of residence. This has been done by the Bureau of the Census since 1938.

Recorded mortality from meningitis is shown for the Death Registration States in table 1 and figure 1. Tuberculous meningitis shows a continuous decline which is more rapid from 1917 on; a decline which could have been caused by any of a number of sanitary or health measures. Simple meningitis has also been declining since 1900; the decline was more rapid from 1900 to about 1915 than after that time. The decline in the total of cerebrospinal meningitis is accompanied by four distinct epidemic waves, 1910-42, not seen in tuberculous or simple meningitis (fig. 1). The broken and dotted lines of figure 1

Figure 2.-The course of morbidity, mortality, and case fatality from cerebrospinal meningitis in Massachusetts, 1873-1944; and in New York State, 1880-1944. Deaths are for the total of cerebrospinal meningitis.
represent the subdivisions of cerebrospinal meningitis which the Bureau of the Census recommends be combined, 1910-38, for comparability with the classification group cerebrospinal (meningococcus) meningitis of the 1938 revision. It is clear from figure 1 that prior to approximately 1925 a transfer of deaths took place from the one classification title to the other, probably the result of a decreasingly smaller percentage of death certificates on which the cause of death was stated to be merely cerebrospinal meningitis unqualified. After approximately 1925 cerebrospinal meningitis not due to meningococcus is a relatively small percentage of the total rate.

Annual morbidity, mortality, and case fatality.-State records of deaths from cerebrospinal meningitis for Massachusetts (9) and New York (10) (fig. 2) show no particular trend prior to 1905. Several rela-
tively small epidemics occurred during the early years which did not synchronize in the two States except for the marked epidemic of 1905. Since 1905 there has been a decline in the death rate and case rate in both Massachusetts and New York. Although the decline in mortality, 1905 to 1940 , is slightly more than in morbidity the difference is probably no greater than could be accounted for by an increase in reporting of cases. The decline in reported case fatality amounted to approximately 3 percent annually, or from about 80 percent in 1925 to 55 percent in 1935. Since 1940 and during the recent major epidemic, however, the drop in case fatality has been greatly acceler-

Table 2.-Annual incidence of cerebrospinal meningitis as reported in the United States and in each of nine geographic sections, 1916-44

Year	$\underset{\text { sections }}{\text { All }}$	$\left\lvert\, \begin{gathered} \text { New } \\ \text { England } \end{gathered}\right.$	Middle Atlantic	East North Central	West North Central	South Atlantic	East South Central	West South Central	Mountain	Pacific
	Case rate per 100,000									
1916.	2.84	4.40	2.68	2.83	2.49	5.08	1.84	1.43	3.01	1. 54
1917.	7.23	9.05	7.48	7.61	12.60	8.85	2.52	2.38	2.04	3.38
1918.	7.52	9.05	6.54	6.03	6.04	11.56	8.12	22.18	4.65	5.57
1919.	3.40	4.94	3.65	2.38	2.62	4.42	3.17	4.30	2.46	2.69
1920.	3.28	4.58	2.91	3.01	2.98	3.87	1.66	3.86	5.11	4.62
1921	2.77	4.08	2.88	2.64	2.85	2.14	1.04	2.12	2.19	3.26
1922.	2.22	3.38	2.40	1.99	1.77	2.01	. 82	1.71	3.34	2.42
1923.	2.19	3.41	1.98	1.72	1.40	3.10	1.51	3.89	4.27	2.27
1924	1.89	2.87	2.36	1.82	1.40	1.99	1.19	1.31	1.37	2.04
1925	1.94	2.63	1.85	1.62	1.27	1.75	2.29	1.40	3.17	3.68
1926.	2. 14	2.42	1.55	1.60	1.36	1.62	1.46	1. 45	5.42	7.58
1927	2.99	1.83	1.74	3.63	3.00	1.62	1.53	1.59	11.22	7.30
1928.	5.33	2.56	6.74	4.97	5.57	1.50	1.92	2.49	26.64	6.21
1929.	9.59	3.95	7.84	12.64	9. 38	2.80	3. 35	7.82	44.12	13. 85
1930.	7.24	3.81	5.25	8.89	7.60	3.80	14.60	4.89	19.88	6.16
1931.	4.73	2.30	4.49	5.27	4.68	3.61	8.77	3.14	8.56	3.80
1932.	2.68	1.80	2.44	3. 69	2.40	2.35	2.82	1. 49	3. 70	2.42
1933.	2.39	1.26	1. 72	3.51	2.80	2.20	2.04	2.26	2.52	2.15
1934.	1. 94	1.41	1.33	2.48	2.37	2.02	1.80	1.70	3.66	1.61
1935.	4.89	2.02	3. 79	5. 26	5.56	8.41	4.69	4.00	5. 50	4.48
1936.	5. 48	4.07	4. 38	4.41	4.06	12. 50	6.00	5. 57	7.73	4.29
1937.	4.15	3.40	3.18	2.83	2.58	9.37	7.49	4.32	4.80	3.45
1938	2.19	1.42	1.80	1.36	1.70	3.78	5.15	2.28	3.92	1.62
1939	1.47	1.12	1.69	. 90	1.02	2.05	2.44	1.52	2.67	1.19
1940	1.27	1.08	1.40	. 84	1.03	1.74	2.11	1.29	1.74	1.04
1941	1.52	1.84	1.60	. 88	. 84	2.68	2.61	1.60	1.37	1.25
1942	2.97	5. 74	3.90	1.05	1.16	5.21	2. 60	1.85	2.18	4.03
1943.	14.09	25. 61	16. 35	9.77	9.17	17.75	12.41	7.14	12.47	17.55
1944	12.64	13.78	14.11	12.92	10.65	11.88	14.51	7.14	7.32	14. 24

[^1]Because of the above selection of States the rates in this table may vary to a slight extent from similar rates published by Hedrich and others.
ated, namely, from approximately 40 percent in 1940 to 15 percent in 1943, or a decline of about 20 percent annually for the 3-year period.

In the country as a whole (tables 2 and 3) morbidity and mortality during the present epidemic were not as high relative to earlier epidemics as in Massachusetts and New York. The decline in case fatality, however, has been similar, that is, from about 4 percent annually or from an average of 85 percent in 1925 to 53 percent in 1935, to about 20 percent annually, or from 39 percent in 1940 to 17 percent in 1943 (table 4). The case fatality among cases treated

Table 3.-Annual mortality from cerebrospinal meningitis ${ }^{1}$ in the United States and in each of nine geographic sections, ${ }^{2}$ 1916-44

Year	sections	$\begin{gathered} \text { New } \\ \text { England } \end{gathered}$	Middle	East North Central	West North Central	South Atlantic	East Central	West $\underset{\text { Central }}{\text { South }}$	$\begin{aligned} & \text { Moun- } \\ & \text { tain } \end{aligned}$	Pacific
	Death rate per 100,000									
1916	3. 19	4.24	2.83	3.12	3.04	3.96			4.93	2.77
1917	4. 19	${ }^{6.23}$	5.25	5. 56	${ }^{6} 688$	5.21			4.36	${ }_{3} 2.51$
1918	${ }_{3}^{4.96}$	5.99		4.15	3.98			5.85	7.09 4 4	3.94
1919	3.18	+ ${ }_{\text {4.28 }}$	${ }_{266}^{3.22}$	2.79	-2.54	3.72	${ }_{1}^{1.62}$	${ }_{3}^{2.51}$	4.07	3. 15
${ }_{1921}^{1920}$	2.34	2.83 2.85 1.85	2.66 2.44	2.13	2.20	3.69 2.69	${ }_{2.03}^{1.94}$	${ }^{.81}$	2.01	3.47
1922	1.76	1.86	2.19	1.51	1.19	1.71	. 92	96	2.27	1.82
1923	1.99	2.60	1.99	1.83	1.40	${ }_{2}^{2.26}$	1.13	1.89 15 1	3.07	2.15
1924	1.73	2.05	1.93	1.52	1.31	2.13	1.89	1.50	2.25	1.79
1925	1.72	1.81	1.81	1.49	1.42	1.98	1. 54	. 97	1.71	2.82
1926.	1. 98	1.88	1.70	1.63	1.36	2.35	1.75	1. 51	3.31	5.95
1927	2.14	1.57	1. 58	2.24	1.81	1.94	1.60	1.40	6.46	4.14
1928	3.28	1.76	4.00	3.20	2.92	1.55	1.71	1.96	13.89	3. 50
1929	5.30	2.48	4. 27	6.73	5. 09	2.41	2.68	4.42	${ }^{23.15}$	7.11
1930	3. ${ }^{3.99}$	1.78 1.18 1	2. 2. 54 1	4.49 2.99	4.43 2.43 2,	2. ${ }_{\text {2. }}^{\text {2 }} \mathbf{4}$	7.59 4.15	3.66	${ }^{12.07}$	3. 23 2. 45 1
1932	2.71 1.65	1.18	2.54 1.56	2.99 2.05	2.43 1.41	2.43 1.58	- 1.15	2.17 1.45	5.93 2.85 1.85	2.45 1.40
1933	1.44	. 74	1.13	1.63	1.68	1.55	1.33	1.89	2.55	1.24
1934	1.20	. 73		1.31	1.55	1. 50	1.12	1.23	1.92	. 87
1935.	2.45	1.40	1.98	${ }_{2}^{2.58}$	2.51	3. 98	2.40	2.42	2.68	2. 19
1936.	2.56	2. 25	${ }^{2.06}$	2. 18	2. 03	5. 20 4.07	2. 54	2.80	3.90	1.95
1937	2.00	1.75	1.988	1.50	1. 51		2.00		2.34 1.39 1	1.61
${ }_{1939}^{1938}$.94	. 44	. 64	. 32	.71	1.98	1.08	. 54	1.32	. 50
1940	.50	. 46	. 55	${ }_{31}$. 40	. 81	. 68	54	. 82	31
1941.-	. 53	. 63	. 51	. 24	41	. 96	1.13	50	63	. 32
1942--	${ }^{.75}$	${ }_{3}^{1.01}$. 980	. 38		${ }_{2}^{1.45}$. 68	. 53	. 95	. 87
1943	2.26 2.19	3.46 2.28	2.83 2.47	1.89 2.36	1.48 1.78	2.71 2.15	1.76 2.49	1.03 1.27	${ }_{2}^{2.11}$	2. 1.92

[^2]at Gallinger Municipal Hospital, Washington, D. C., (7) during the spring of 1943 is reported as 10.2 percent.

During the First World War fatality from cerebrospinal meningitis in the United States Army is reported to have been 39 percent with 5,839 cases and 2,279 deaths occurring in 33 months from April 1917 to December 1919 (12); during the present epidemic case fatality has been cut, by the use of sulfa compounds, to as low as 3.3 percent among cases occurring in the Fourth Service Command during the first 6 months of 1943 (11).

Figurx 3.-Monthly morbidity and mortality (annual base) from cerebrospinal meningitis in the United States, 1916-44. Deaths are for cerebrospinal (meningococcus) meningitis.

The records of cases and deaths in Massachusetts and New York indicate a direct relationship between the percentage of cases reported and the presence of an epidemic. In New York State, for example, 1925-26 and 1933-34 were interepidemic while 1928-29 and 1935-36 were epidemic years. During these epidemic years recorded case fatality was roughly 50 percent, whereas, during interepidemic years it rose to 80 percent or more; this probably indicates a substantial increase in the number of minor cases reported during epidemics which escape detection in interepidemic years.

Cerebrospinal meningitis in the United States.-Figure 3 shows the monthly incidence and mortality from cerebrospinal meningitis as reported in the United States. Rates are based on the records of 40 States which supplied continuous reports of cases from 1926 on; from 1916 to 1925 the records of cases are less complete and the rates are based on an expanding area (see table 2, footnote 1). Monthly
deaths are for cerebrospinal (meningococcus) meningitis and do not include cerebrospinal meningitis not due to meningococcus.

The course of meningitis is a series of epidemic waves extending over varying numbers of years. The rates rise from a relatively low level to epidemic proportions and fall again to an insignificant amount. The word "epidemic" may perhaps be used to describe these periods of high incidence even though in the case of meningitis an "epidemic" is of several years' duration. Since 1916 there have been four distinct epidemic waves of meningitis in the United States. The first (fig. 3) began prior to 1916, reached a maximum in 1917, and descended slowly through 1924; the second period was of 10 years' duration, 1925 to 1934 , with the peak in 1929; the third cycle extended from 1935 to 1940 with 1936 as the peak year; the current epidemic reached its peak in 1943 and is subsiding at the present time.

Table 4.-Annual deaths per reported cases of cerebrospinal meningitis ${ }^{1}$ in the United States, ${ }^{2}$ 1916-44

Year	$\begin{gathered} \text { Case } \\ \text { fatality } \end{gathered}$	Year	Case fatality								
1916.-	$\begin{gathered} \text { Percent } \\ 106.9 . \end{gathered}$	1921.-	Percent 82.8	1926.-	$\begin{array}{r}\text { Percent } \\ \hline 90.9\end{array}$	1931.-	$\begin{array}{r} \text { Percent } \\ 57.3 \end{array}$	1936.-	Percent 46.7	1941.-	Percent 34.4
1917.-	67.1	1922.-	77.9	1927..	71.0	1932.-	61.4	1937--	48.1	1942--	25.3
1918.-	65.2	1923.-	91.2	1928. -	61.1	1933.-	60.2	1938.-	43.0	1943.-	16.0
1919.-	92.8	1924.-	89.2	1929.-	55.3	1934--	61.8	1939--	41.1	1944.-	17.3
1920.-	85.3	1925.-	87.8	1930.-	55.1	1935.-	50.0	1940.-	39.2		

${ }^{1}$ See table 3, note 1, for International List titles used for deaths from cerebrospinal meningitis.
${ }^{2}$ See table 3, note 2, for the States included.
A seasonal cycle in meningitis is superimposed upon the longer cyclical movement. The seasonal peak usually occurs in March although it is frequently in February or April; in half of the 29 years-(1916-44) March was the peak month, in the remainder of the time the peak occurred in February or April. From July to November meningitis rates are comparatively low. A calendar year includes by far the major portion of an individual seasonal cycle, although October to September would be a somewhat better annual period for meningitis. The rate of increase in the rates from the low period in August, September, and October to the peak in February, March, and April is somewhat greater at the crest than at the trough of an epidemic cycle. The epidemic and seasonal cycles are evident in both cases and deaths from cerebrospinal meningitis.

Regional differences in the United States.-Quarterly case rates and annual case and death rates (fig. 4) show the course of cerebrospinal meningitis in nine geographic regions of the United States. The four epidemic periods seen in the country as a whole are also evident in each of the sections. Neither the peak nor the low years are identical in all sections and the relative importance of a specific epidemic varies with section; nevertheless, the general appearance of the curves is the

Table 5.-Monthly incidence of cerebrospinal meningitis as reported in the United States, ${ }^{1}$ 1916-45 (September)

Year	$\begin{gathered} \text { Janu- } \\ \text { ary } \end{gathered}$	February	March	April	May	June	July	$\mathrm{Au}-$ gust	Sep- ber	$\begin{aligned} & \text { Octo- } \\ & \text { ber } \end{aligned}$	$\begin{gathered} \text { No- } \\ \text { vem- } \\ \text { ber } \end{gathered}$	$\begin{gathered} \text { De- } \\ \text { cem- } \end{gathered}$ ber
	Case rate per 100,000 (annual base)											
1916	2.65	2.74	3.45	3.75	3.16	3.37	3.06	2.95	2.18	2. 20	2.28	2. 22
1917	3.15	5.64	11.44	15.69	13.62	10.05	5.83	3.88	3.67	3. 53	4.28	5.91
1918.	11. 19	12.94	13.65	13.08	10.21	5. 39	4.84	4.47	3.77	4.09	3.15	3.85
1919	3.96	4.63	4.81	4.43	3.82	2.52	3.07	2.46	2.50	2.90	2.80	2.95
1920	4.31	4.53	4.37	3.62	3.51	2.76	2.36	2.52	2.78	2.81	2.92	2.81
1921	3.13	3. 80	3.68	2.84	2.34	2.42	2.67	2.93	2.42	2.37	2.47	2.26
1922	2.60	3.57	3.02	2.74	2.62	1.91	1.38	2.03	1.61	1.64	1.86	1.73
1923	2.25	2.39	3.10	2.56	2.39	2.17	1.82	2.02	1.69	2.06	2.20	1.65
1924.	2.28	2.31	2.35	2.47	1.93	1.91	1.64	1.47	1.75	1.70	1.61	1.28
1925	2.28	2.02	2.72	2.32	1.95	1.70	1.58	1.63	1.90	1.45	1.27	2.44
1926	2.12	2.93	3.23	2.72	2.30	2.03	1.97	1. 52	1.63	1. 57	1.67	2.02
1927	3.31	3.45	3.66	3.88	3.14	3.10	2.40	2. 33	2.39	2.40	2.77	3.13
1928	4.53	4.78	7.38	6.87	7.31	5.41	3.58	4.25	3.88	4.04	4.36	7.40
1929	11.66	12.80	15.22	15.29	13.68	9.59	6.61	5. 23	4.99	5. 27	6.25	8.68
1930	11.32	12.91	13.27	12.98	7.87	4.97	3.80	4.41	3.31	3. 64	4.20	4. 59
1931.	6.94	7.23	8.13	7.72	5. 59	3.86	2.70	3.17	2.62	2.73	2.89	3.39
1932.	3.78	3.68	3.70	3. 73	2.72	2.30	1.65	1.86	1.75	1.88	2.25	2.83
1933.	3.80	3.29	4.15	3.28	2.60	1.78	1. 57	1.73	1.29	1.15	1.76	2. 30
1934	2.06	2.41	2.77	2.56	2.30	2.12	1.31	1.48	1.36	1.39	1.26	2.30
1935	3.49	6.38	7.36	7.60	7.50	5.72	3.70	3. 29	2.56	3.03	3.51	4.68
1936	7.05	8.96	10.43	9.41	6.86	4.26	3.14	2.42	2.44	2.78	3.81	4.21
1937.	5. 96	6.58	7.45	6.54	4.73	3.13	3.10	2.40	1.92	2.43	2.72	3.04
1938.	3.58	3.54	3.22	2.91	2.12	2.00	1.46	1.42	1.32	1.52	1.34	1.89
1939	2.08	2.18	2.03	1.83	1.54	1.20	1.10	. 80	1.09	1.26	1.27	1.24
1940	1.40	1.80	1.75	1.43	1.32	1.07	1.04	1.01	1.10	. 94	1.08	1.26
1941	1.70	1.76	2.12	2.08	1.67	1.40	1.26	1.16	1.13	1.07	1.53	1. 43
1942.	2.29	2.40	3.26	3.70	3.64	3.14	2.16	2.21	1.86	2.57	2.83	5. 47
1943	12.61	17.24	22.46	24. 00	21.05	15. 15	9.80	6.81	7.15	8.60	9.11	15.40
1944.	22.13	23.09	21.90	19.52	15.09	9.93	7.80	6.49	5.23	6.22	7.01	7.94
1945	9.50	10.25	10.23	7.45	6.92	5.94	4.76	3.41	3.58			

${ }^{1}$ See table 2 note 1 for the States included.
Table 6.-Monthly mortality from cerebrospinal (meningococcus) meningitis ${ }^{1}$ in the United States, ${ }^{2}$ 1918-44

Year	January	February	March	April	May	June	July	August	Sep-tember	October	$\begin{gathered} \text { No- } \\ \text { vem- } \\ \text { ber } \end{gathered}$	$\begin{aligned} & \text { De- } \\ & \text { cem- } \\ & \text { ber } \end{aligned}$
	Death rate per 100,000 (annual base)											
1918.	4.16	5. 23	6.38	5.96	4. 48	3.09	2.53	2.50	1. 96	2. 53	1.86	2.38
1919	2.25	2.31	2.56	2.28	2.12	1.66	1. 72	1.54	1. 59	1. 50	1. 18	1.72
1920	2.10	2.33	2.05	1.77	1.98	1.48	1.19	1.35	1.47	1.32	1.33	1.53
1921	1.14	1.99	1.65	1.52	1.25	1.50	1.34	1.32	1.14	1.12	1. 12	1. 27
1922	1.17	1.28	1.33	1.23	1.14	. 66	. 70	. 70	. 68	. 69	. 80	. 79
1923.	1.06	. 78	1.29	1.42	1.23	1.11	. 85	. 89	. 72	. 94	. 94	. 71
1924	. 87	1.25	1.07	1.21	91	. 80	. 88	. 88	. 59	. 77	. 95	76
1925	1.28	1.07	1.23	1.12	1.40	1.05	. 95	1.08	1.01	. 74	. 89	1.20
1926	1.49	1.84	1.59	1.53	1.51	1.24	1.34	1.04	1. 10	1.09	1.06	1.27
1927	1.59	2.04	1.98	2.16	1.81	1.52	1.27	1. 19	1.10	1.22	1.39	1.67
1928.	2.06	2.98	3.27	3.71	3.24	2.44	2.30	2. 19	1.80	2.16	2.25	3.88
1929.	5.44	6.78	7.56	6.70	6.64	4.19	3.50	2.70	2. 24	2. 53	3.22	4.49
1930	5.34	6.35	6.37	5.83	3.80	3.03	2.01	2.01	1.67	1.91	2.03	2.46
1931	3.80	3.85	3.71	4.08	2.95	1.77	1.45	1.46	1.10	1.20	1.77	1.52
1932.	1.88	2.20	2.11	1.82	1.53	. 97	. 96	. 91	. 82	. 84	1.11	1. 56
1933.	1.69	1.91	2.00	1.75	1.22	1.12	. 88	. 69	. 66	. 70	. 91	1.21
1934	1.27	1.10	1.28	1.17	1.51	. 86	. 76	. 81	-. 58	73	78	1.17
1935	2.03	2.56	3. 57	3. 13	3.22	2.18	1. 55	1. 19	1.38	1.23	1.58	2.26
1936	3.00	3.61	4.30	3.68	2.87	1.77	1.43	. 98	. 88	1.19	1.75	1.95
1937	2.83	2.95	3.17	3.13	1.83	1.08	1.11	. 79	. 61	. 95	1.07	1.08
1938.	1.26	1.34	1.10	. 91	. 70	. 61	. 46	. 54	. 45	. 58	. 61	. 74
1939	. 95	1.05	. 61	. 63	. 60	. 45	. 59	. 38	. 52	. 44	. 58	. 48
1940	. 80	. 74	. 52	. 58	. 53	. 46	. 36	. 37	. 26	. 43	. 42	. 49
1941	. 59	. 71	. 90	. 62	. 61	. 42	. 44	. 58	. 25	. 39	. 38	47
1942.	. 49	65	92	1.00	79	77	. 48	52	. 48	80	86	1. 29
1943	2.21	2.61	3.36	3. 39	2.85	1.98	1. 66	1.19	1.10	1.84	1.75	3.18
1944......	4.25	3.54	3.43	3.16	2.38	1.80	1.23	1.02	. 91	1.21	1.75	1.71

[^3]${ }^{2}$ See_table 2, note 1, for the States included.
same in all regions. In separate States, also, the incidence is generally similar to that for all areas. During the epidemic which reached its peak in 1929 for all States combined, the peak occurred in 1928 for 5 States, in 1929 for 24 States, in 1930 for 9 States, and in 1931 for 2 States. During the 1936 epidemic, 12 States had a peak rate in 1935, 22 in 1936, and 6 in 1937. Low rates extend over a longer period in single States than in the entire country but the trough tends to occur at approximately the same time in every State.

In each epidemic of meningitis for which there is a record, all sections of the country were affected. The epidemic of 1917 appeared early in the Eastern States; the peak occurred in 1917 in the New England, Middle Atlantic, and North Central sections, and in 1918 in the remainder of the Southern and Western sections. In the Mountain and Pacific regions the epidemic of 1917 occurred late and was relatively less important there than in the rest of the country. Following the 1917 epidemic the South Central sections reached a low incidence of meningitis at about 1921 or 1922, and the Pacific in 1924; while the rate in the Central, Eastern, and Southern sections continued to decline until 1925 or later. The epidemic of 1929 was of major importance in all sections except the South Atlantic. The epidemic appeared first in the Pacific and Mountain sections but reached its peak (deaths) in 1929 in all sections except the South Atlantic and East South Central where the maximum rate occurred in 1930. The year 1934 was a low year for the incidence of meningitis in all sections. The epidemic of 1936 was of less importance than that of 1929 in all sections except the South Atlantic and possibly New England. The South Atlantic section experienced a relatively severe epidemic in 1936. The peak occurred in 1935 in the North Central and Pacific sections and in 1937 in the East South Central; in all other regions the maximum rate (deaths) occurred in 1936. Low rates of meningitis occurred in 1940 and 1941 in all sections. The current epidemic has been severe in all regions, particularly in the New England and Middle Atlantic, where the rates have been greatly in excess of those recorded during any other epidemic. In the remainder of the sections the current epidemic is approximately of the magnitude of that of 1929 with the exception of the South Atlantic where it was somewhat greater than the epidemic of 1936. The 1943 epidemic started earlier and reached a peak earlier (1943) in the coast sections, namely, in the New England, Middle Atlantic, South Atlantic, and Pacific and Mountain areas. In the North Central and South Central regions the maximum rate occurred in 1944. Indications are that the peak of the present epidemic has been passed in all regions. ${ }^{3}$

[^4]

Figure 4a.-Quarterly morbidity (annual base) and annual morbidity and mortality from carebrospinal meningitis in nine geographic sections of the United States, 1916-44. Deaths are for the total of carebrospinal meningitis.

Figure 4b.-Quarterly morbidity (annual base) and annual morbidity and mortality from cerebrospinal meningitis in nine geographic sections of the United States, 1916-44. Deaths are for the total of cerebrospinal meningitis.

Figurz 58.-Number of reported cases of cerebrospinal meningitis in foreign countries, 1919-44. Current reports of cases of communicable diseases to the Health Section of the League of Nations.

Figure 5b.-Number of reported cases of cerebrospinal meningitis in foreign countries, 1919-44. Current reports of cases of communicable diseases to the Health Section of the League of Nations.

Cerebrospinal meningitis in foreign countries.-Figure 5 shows the incidence of cerebrospinal meningitis during a number of years for a large proportion of the countries which furnished the Health Section of the League of Nations (6) with a report of current cases. The graphs are of numbers of cases plotted on semilogarithmic paper. Rates for foreign countries have not been computed since the level of reported cases could not be compared for various countries, in any case; and both numbers of cases and case rates would give identical lines plotted on a logarithmic scale, except for possible changes in population over a period of years.

The earliest records are for 1919 and so do not include the period of the first World War. In special articles which have appeared from time to time in the monthly Epidemiological Report of the Health Section of the League of Nations the statement is made that there was "universal increase in cerebrospinal meningitis during the war years and immediately after." The very marked increase associated with the second World War is obvious from the chart; maximum rates occurred in the various countries from 1939 to 1943 or the year of the last report. Following the First World War the incidence of cerebrospinal meningitis declined in foreign countries and remained relatively constant for several years as it did in the United States. During the remainder of the period between the two World Wars there, have occurred one, two, or possibly three periods of increased incidence which more or less synchronize over large areas. Inspection of the chart will give the available details for specific countries. On the whole, however, the first epidemic increase to follow World War I was in the United States and Canada, in 1929. Countries of Eastern Europe, for example Poland, also showed increases at about that time. Western Europe, however, experienced increases somewhat later, approximately 1931; Northern Africa in 1930; Egypt in 1932. The 1936 epidemic in the United States has no counterpart in Europe; in the relatively few countries which represent Asia and in Southern Africa, however, there were periods of increased incidence centering about 1935. Australia and New Zealand were relatively free from cerebrospinal meningitis from 1919 to 1940.

It is noteworthy that in African countries a period of exceptionally high incidence of meningitis is followed by a rate which is practically zero. Although cases are better reported during epidemics than during the periods between them the differences in the numbers of cases in epidemic and nonepidemic periods are so great that this fact would seem to be only a partial explanation of the difference.

Cerebrospinal meningitis became increasingly prevalent in the United States at the end of 1942 after the United States entered the second World War. The number of reported cases in 1943 and 1944 is the largest ever recorded for the entire country.

State reports of cerebrospinal meningitis for Massachusetts and New York (1873-1942) show a series of epidemic waves which have had a downward trend since about 1905 in both cases and deaths. Case fatality shows a marked decrease since 1940. In the country as a whole the case fatality of cerebrospinal meningitis, based on reported cases, has declined from 55 percent in 1930 to 39 percent in 1940, and 16 percent in 1943; a case fatality of 3 percent in 1943 is reported for some Army camps.

A continuous record of reported cases is available for a majority of the States (40 States from 1926 on); and shows four distinct epidemic periods since 1916, each wave extending over a series of years. All sections of the country contributed to each epidemic rise although the peak year, the length of the epidemic period, and the severity of the epidemic vary in the several sections.

Reports of foreign countries to the Health Section of the League of Nations show a very marked rise in the incidence of meningitis at the beginning of World War II in practically every country where records are available. Between 1919 and the opening of World War II most of the countries of the world experienced one, two, or possibly three minor epidemic waves which tended to synchronize over large areas.

REFERENCES

(1) Bruce-Low, R: The prevalence of cerebrospinal meningitis throughout the world during recent years. Report on cerebrospinal fever. Local Govt. Board, London, 1916 New Series, No. 110, 115-183.
(2) Fowler, William: The reportable diseases. Diseases and conditions required to be reported in the several States. Pub. Health Rep., 59: 317-34C (Mar. 10,1944) ; Supp. No. 100 to Pub. Health Rep. (1933); and Pub. Health Rep., 34: 233-238 (Feb. 7, 1919).
(8) Hedrich, A. W.: The movements of epidemic meningitis, 1915-1930. Pub. Health Rep., 46: 2709-2726 (Nov. 13, 1931).
(4) Hirsh, A.: Handbook of Geographical and Historical Pathology. London, 1886. Pp. 549-564.
(5) Howard, William Travis: Public Health Administration and the Natural History of Disease in Baltimore, Md., 1797-1920. Carnegie Institution of Washington, September 1924. Pp. 418-428.
(6) League of Nations: Health Organization. Annual, monthly, and weekly epidemiological reports.
(7) Lepper, Mark H.; Sweet, Louis K.; and Dowling, Harry F.: The treatment of meningococcic infections with sulfadiazine and sulfamerazine. J. Am. Med. Assoc., 123: 134-138 (Sept. 18, 1943).
(8) Mountin, Joseph W.; and Flook, Evelyn: Distribution of health services in the structure of State government. Chap. II. Communicable disease control by State agencies. Pub. Health Rep. 56: 2233-2258 (Nov. 21, 1941); or Pub. Health Bull. No. 184, 3d ed. (1943).
(9) State of Massachusetts: Annual Report on Vital Statistics; and Annual Report of the Department of Public Health.
(10) State of New York: Annual Report of the Department of Health, vol. 2.
(11) Thomas, Col. Henry M., Jr.: Meningococcic meningitis and septicemia. Report of outbreak in Fourth Service Command during winter and spring of 1942-43. J. Am. Med. Assoc., 123: 264-272 (Oct. 2, 1943).
(12) United States Army: Cerebrospinal Meningitis. Chapter IV in the Medical Department of the United States Army in the World War, 9: 203-221 (1928).
(13) United States Bureau of the Census, Vital Statistics Division: Classification of terms and comparability of titles through 5 revisions of the International List of Causes of Death. Washington, 1944.
(14) United States Bureau of the Census, Vital Statistics Division: Comparison of Cause of Death Assignments by the 1929 and 1938 Revisions of the International List. Deaths in the United States, 1940. Special Reports, 19: 153 (July 14, 1944).
(15) United States Public Health Service: The notifiable diseases. Prevalence of certain important communicable diseases, by States. Supplements to Pub. Health Rep. (issued annually).

SOME PHYSICAL PROPERTIES OF DDT AND CERTAIN DERIVATIVES ${ }^{1}$

By Howard L. Andrews, Senior Physicist, William C. White, Associate Physicist, Loubov R. Gamow, Junior Physicist, and Dorothy C. Peterson, Junior Chemist, United States Public Health Service

In a previous report the ultraviolet absorption spectrum and the X-ray diffraction pattern (1) of DDT were described and applied to the detection of low concentrations in air and in biological materials. Since the publication of that information certain derivatives have proved to be of particular interest in studies of the mode of action and the fate of ingested DDT. The present report extends the ultraviolet absorption studies to four DDT derivatives, and includes the infrared absorption spectra and the X-ray diffraction patterns of the five compounds. A crystallographic analysis of DDT is also presented.

In the previous work the DDT used was supplied by Dr. H. L. Haller, Bureau of Entomology and Plant Quarantine, Department of Agriculture. In the present study the DDT was recrystallized, melting point 108.6° to $109.5^{\circ} \mathrm{C}$, supplied by the Insect Control Board of the Office of Scientific Research and Development as Standard DDT. The four derivatives were synthesized (2) in this laboratory by T. R. Sweeney and W. C. White:

1. 2,2 bis(p-chlorophenyl) 1,1 dichloroethylene (dichlordiphenyl-dichlorethylene), melting point $89^{\circ} \mathrm{C}$.
2. Di(p-chlorophenyl)acetic acid (dichlordiphenyl acetic acid), melting point 166.0° to $166.5^{\circ} \mathrm{C}$.
3. $4,4^{\prime}$ dichlorodiphenylmethane (dichlordiphenyl methane) melting point 55° C.
4. $\mathrm{p}, \mathrm{p}^{\prime}$ dichlorobenzophenone (dichlordiphenyl ketone) melting point 147° to $148^{\circ} \mathrm{C}$.
[^5]In the previous work on DD'T an ether-alcohol mixture was used as a solvent and determinations were made with a Hilger Spekker spectrophotometer and a Beckman spectrophotometer. In the present work the Beckman spectrophotometer was used exclusively with $2,2,4$ trimethyl pentane (isooctane) as the solvent.

The data obtained are presented in figure 1. DDT is characterized by one main band with its peak at $237.5 \mathrm{~m} \mu$. There is evidence of a weaker band at $221 \mathrm{~m} \mu$ and several much weaker bands between 260 and $280 \mathrm{~m} \mu$. Using the main band at 237.5 it appears that in the absence of interfering substances 0.5 microgram can be detected and 3.0 micrograms accurately measured.

Dichlordiphenyl dichlorethylene shows a rather general absorption throughout the ultraviolet. There is a suggestion of an absorption maximum at $242 \mathrm{~m} \mu$ which may be the 237.5 band of DD'T displaced. There is no evidence of the structure found in DDT between 260 and $280 \mathrm{~m} \mu$.

Dichlordiphenyl acetic acid shows an absorption band with a maximum at $229.5 \mathrm{~m} \mu$ which is probably the 237.5 DDT peak displaced. The molecular extinction is slightly greater in DDT but the difference is not large. The four low intensity bands found in DDT between 260 and $280 \mathrm{~m} \mu$ are also present in the acetic acid derivative but occur at slightly different wave lengths. The acetic acid compound shows no sign of the $221-\mathrm{m} \mu$ peak found in DDT, but it is possible that this has been shifted to a wave length below the range of the instrument.

A prominent peak is also found in dichlordiphenyl methane but is shifted to $228.5 \mathrm{~m} \mu$. In the DDT absorption curve there is evidence of several bands in this region which are only partially resolved. In the methane compounds there is evidence of still more unresolved bands below $228 \mathrm{~m} \mu$. Here again the $221-\mathrm{m} \mu$ band is missing but has probably been displaced to a shorter wave length. In the methane compound the structure in the longer wave length region is more prominent and two additional bands can be seen.

Dichlordiphenyl ketone shows an absorption distinctly different from DDT. There is one very broad band with a peak at $261 \mathrm{~m} \mu$ with no evidence of any partially resolved bands. As might be expected there is no resemblance to the absorption curves for diphenyl and diphenyl methane.

As can be seen from figure 1 the maximum values of molecular extinction fall within a narrow range and hence the lower limits of detection will be nearly the same for each of the pure compounds. For some combinations, notably the ketone and DDT, the components of a mixture can be determined, but for other combinations separation is

Figure 1.-Ultraviolet absorption spectra of DDT and four related compounds.
impossible. The striking differences between the ethylene and ketone curves and those for the other compounds emphasize the profound effect of double bonds on ultraviolet absorption spectra.

INFRARED ABSORPTION SPECTROSCOPY

All of the infrared spectra reported here were taken on a PerkinElmer Model 12A infrared spectrometer with a double passage of light through a 60° sodium chloride prism. All measurements covered the wave-length range from 1 to 13 microns. The slit widths were kept as narrow as was consistent with adequate galvanometer deflections. A series of 10 slit widths was used to cover the entire wave-length range and always had the same value at any given wave length. Some data in the 1-4-micron region has been obtained with a double prism spectrometer with lithium fluoride optics but is not presented here since the increased dispersion makes comparisons with other data difficult, and only a small portion of the spectrum can be studied.

Attempts were made to obtain crystalline layerswith sufficiently high optical quality to permit direct absorption measurements. In no case could such a film be obtained, the crystals always forming in random orientations so that light scattering was severe. It was therefore necessary to study the absorption in suitable solvents. Carbon tetrachloride was used from 1 to 8 microns but is not satisfactory at longer wave lengths because of its own intense absorption bands. Carbon disulphide was used from 7 to 13 microns. These solvents are not ideal but appear to be the best available.

The absorption curves are shown in figure 2. The spectra are quite complex and only a few correlations can be made between them and the chemical structures.

All the compounds show a band at approximately 3.2 microns ($3,100 \mathrm{~cm} .^{-1}$), which is characteristic of aromatic C-H band stretching. In DDT, dichlordiphenyl methane, and dichlordiphenyl acetic acid there is evidence of a second band at about $2,950 \mathrm{~cm} .^{-1}$ which is associated with an aliphatic C-H band stretching, and these three compounds all have a $\mathrm{C}-\mathrm{H}$ band outside a ring.

Dichlordiphenyl acetic acid and dichlordiphenyl ketone show prominent sharp bands at $1,750 \mathrm{~cm} .^{-1}$ and $1,700 \mathrm{~cm} .^{-1}$, respectively. These bands fall within the range commonly associated with the C-O linkage and these two compounds are the only ones in this series having this group.

All five compounds show a band at about $1,500 \mathrm{~cm} .^{-1}$ which is probably the second harmonic of the $\mathrm{C}-\mathrm{Cl}$ vibration which usually occurs at $750 \mathrm{~cm} .^{-1}$. The fundamental frequency of this band lies beyond the long wave-length limit of the present data.

All five compounds show a strong band near 9.2 microns, and this is

Figure 2.-Infrared absorption spectra of DD'T and four related compounds.
found in other diphenyl compounds described in the literature (3). All have a rather complex structure from 9 to 13 microns with several bands which have not been correlated with known linkages.

The 9.2 -micron band offers the best possibility for the detection of DDT in the absence of interfering substances. From the intensity of this band it appears that about 200 micrograms of DDT are required for measurement. The limits of detection for the other four compounds studied vary somewhat but are of the same order of magnitude as for DDT.

There are enough differences between the absorption curves to permit the determination of any one of the five compounds in the presence of any combination of the others.

As can be seen from the figure, the curves with the two solvents do not agree in the overlapping wave-length region. This is probably due to interaction and emphasizes that the same solvent must be used if comparable results are to be obtained. If a technique for obtaining suitable crystalline layers can be developed, this will be the method of choice since the solvent difficulties will be eliminated.

DDT CRYSTALLOGRAPHY

DDT crystallizes from most of its solvents in colorless, acicular crystals, usually twinned along their length. The crystals are very soft and friable with no evident cleavage plane and with uneven and somewhat splintery fracture. The specific gravity as measured in a $25-\mathrm{ml}$. pycnometer, using an aerosol wetting agent to assure complete removal of occluded air bubbles, is 1.52 . Studies with the polarizing microscope show that DDT crystals are biaxial and optically positive. They show parallel extension and 2 V is large. The indices of refraction were measured with sodium light by the immersion method, using solutions of potassium mercuric iodide as immersion media. The indices are: $\alpha=1.628 ; \beta=1.64 ; \gamma=1.695$. These values agree fairly well with crystallographic data by E. L. Gooden (4) and I. Fankuchen, M. Schneider, and J. Singer (5).

The X-ray diffraction patterns of DDT (1) and dichlordiphenyl acetic acid (2) have been previously reported but will be repeated here for comparison with the other derivatives in this series. The X-ray diffraction patterns (fig. 3) were obtained, using the powderwedge technique in a cylindrical camera with $7.16-\mathrm{cm}$. radius exposed to radiation from a copper anode X-ray tube with a nickel-foil filter giving essentially $\mathrm{Cu}_{\mathrm{K}_{\alpha}}$ radiation. The interplanar spacings (d) and the relative intensities (as measured on a microphotometer) for DDT and the four derivatives studied are given in table 1. There are enough differences between the patterns to permit the detection of individual components in mixtures in some cases. The DDT pattern, although somewhat weaker than the others, is sufficiently distinctive for easy identification.

The X-ray diffraction pattern of DDT is of sufficient intensity to permit its identification in a dust sample when present in a concentration of 10 percent or more. The actual amount of DDT detectable by its diffraction pattern is about 1 mg . The other compounds can be detected in somewhat smaller concentrations.

Table 1.-X-ray powder diffraction data for DDT, dichlordiphenyl dichlorethylene, dichlordiphenyl acetic acid, dichlordiphenyl methane, and dichlordiphenyl ketone

DDT		Dichlordiphenyl dichlorethylene		Dichlordiphenyl acetic acid		Dichlordiphenyl methane		Dichlordiphenyl ketone	
d	I/Io	d	1/Io	d	I/Io	d	I/Io	d	I/Io
	0.54	8.9.-	0.23	13.3.-	0.07	6.9.	0.08	4.87	0.60
5.9.-	88	8.3.-	. 07	5.66..	. 33	6.6-	. 05	4.80.	. 43
5.4	50	7.7--	. 11	4.73 .	1.00	5.5.-	. 17	4.51	. 15
4.98	1.00	6.9.	. 04	4.38	. 53	4.9	. 11	4.34	. 11
4.81	. 21	6.1	. 04	4.18	. 45	4.58	1.00	3.84	. 11
4.43	. 96	4.85--	1.00	3.84	. 28	4.27 -	. 25	3.69	1.00
4.20	. 79	4.65	. 44	3.70	. 30	3.76	. 11	3.14-	. 65
4.10	. 42	4.36	. 30	3.54	. 27	3.56B	. 60	3.02	. 43
3.86B ${ }^{1}$. 38	4.20 .	. 46	3.40	. 17	3.42	. 02	2.90B	. 15
3.78B	. 25	4.04	. 49	3.28	. 38	3.35.	. 19	2.80---	. 04
3.60	. 46	3.89B	. 47	3.18	. 05	3.20	. 02	2.48	. 10
3.51	. 50	3.82	. 33	3.06	. 57	3.15	. 14	2.43	. 06
3.35	. 67	3.70B	. 21	2.96	. 03	3.07.	. 30	2.34	. 07
3.25	. 21	3.56...	. 46	2.89	. 07	3.00	. 16	2.24B	. 10
3.16	. 38	3.46	. 56	2.80	. 08	2.91	. 13	2.15	. 15
3.05B	. 83	3.37	. 11	2.66	. 13	2.86	. 14	2.11	. 11
2.94B	. 67	3.27B	. 51	2.55	. 13	2.73B	. 04	2.08...	. 11
2.83	. 33	3.08	. 30	2.47	. 05	2.49	. 04	2.03	. 15
2.78	. 46	3.02	. 53	2.39	. 07	2.43	. 05	1.96	. 06
2.73	. 69	2.95	. 44	2.28	. 06	2.39 -	. 04	1.90	. 30
2.68	. 13	2.86B	. 12	2.18	. 07	2.30	. 04	1.812	. 10
2.60	. 15	2.79	. 07	2.14	. 12	2.27 .	. 04	1.794	. 10
2.52 B	. 25	2.70	. 05	2.10	. 03	2.24	. 04	1.741	10
2.47	. 08	2.58	. 07	2.06	. 05	2.20	. 04	1.722	. 10
2.40	. 19	2.49	. 12	1.90	. 12	2.12B	. 02	1.540	. 10
2.30	. 25	2.44	. 06			2.02	. 04	1.397	. 05
2.25 B	. 29	2.26 B-	.11			1.95	. 04	1.356	. 05
2.19 .	. 10	2.17	. 16			1.90	. 04	1.218	. 05
2.17	. 06	2.12	. 04			1.855	. 04	1.190..	. 05
2.04	. 38	2.09	. 16			1.824	. 04		
2.01	. 29	2.05	. 04			1.784	. 04		
1.98	. 15	1.98	. 16			1.705	. 04		
1.93	. 10	1.96	. 10			1.682	. 02		
1.888 B	. 15	1.92	. 10			1.654	. 04		
1.856	. 06	1.88	. 10			1.583	. 02	$*$	
1.839	. 10	1.828	. 10						
1.786	. 06	1.801	10						
1.768	. 06	1.770	10						
1.744	. 38	1.720	07						
1.691	. 06	1.682	. 07						
1.675	. 10	1.571	. 04						
1.629	. 10	1.505	. 10						
		1.445-.	. 07						
		1.411							

${ }^{1} \mathrm{~B}$ designates a broad line.

REFERENCES

(1) Neal, P. A., et al.: Toxicity and potential dangers of aerosols, mists, and dusting powders containing DDT. Supplement No. 177 to the Public Health Reports, 1944.
(2) White, W. C., and Sweeney, T. R.: The metabolism of 2,2 bis(p-chlorophenyl) $1,1,1$ trichloroethane (DDT). I. A metabolite from rabbit urine, di(p-chlorophenyl) acetic acid; its isolation, identification and synthesis. Pub. Health Rep., 60: 66-71 (1945).
(8) Barnes, R. B.; Gore, R. C.; Liddel, U.; and Williams, V. Z.: Infrared Spectroscopy. Reinhold Publishing Corp., 1944. New York.
(4) Gooden, E. L.: Optical crystallographic properties of DDT. J. Am. Chem. So c:, 67: 1616 (1945).
(5) Fankuchen, I.; Schneider, M.; and Singer, J.: Some X-ray crystallographic data on DDT. Science, 103: 25 (1946).
Public Health Reports, Vol. 61, No. 13, March 29, 1946

Figure 3.-X-ray diffraction pattern.

DEATHS DURING WEEK ENDED MARCH 2, 1946

[From the Weekly Mortality Index, issued by the Bureau of the Census, Department of Commerce]

	Week ended Mar. 2, 1946	Corresponding week, 1945
Data for 93 large cities of the United States:		
Total deaths	10,371	9,866
A verage for 3 prior years-.-.	9,850	
Total deaths, first 9 weeks of year	94, 375	88, 258
Deaths under 1 year of age	625	689
	673	
Deaths under 1 year of age, first 9 weeks of year	5,479	5,752
Data from industrial insurance companies:		
Policies in force--1--.-	67, 181, 267	67, 079,160
Death claims per 1,000 policies in force, annual rate	12.3	12.7
Death claims per 1,000 policies, first 9 weeks of year, annual rate	11.3	10.7

PREVALENCE OF DISEASE

No health department, State or local, can effectively prevent or control disease without knowledge of when, where. and under what conditions cases are occurring

UNITED STATES

REPORTS FROM STATES FOR WEEK ENDED MARCH 9, 1946

Summary

A total of 5,532 cases of influenza was reported for the week, as compared with 5,337 last week and a 5 -year median of 4,744 . Decreases occurred in all geographic areas except the South Atlantic and West South Central. The increase in the latter area was accounted for chiefly by an increase in Texas from 1,792 last week to 2,830 for the current week. The total for the year to date is 165,882 , as compared with 43,198 and 310,953 , respectively, for the corresponding periods of 1945 and 1944, and a 5 -year median of 49,557.

The incidence of diphtheria declined from 361 cases last week to 325 cases for the current week. The largest number reported for a corresponding week of the past 5 years is 340 cases in 1942. States reporting more than 9 cases each are Texas (48), New York (23), Pennsylvania (21), Ohio (20), Illinois and California (18 each), Maryland (17), Indiana (14), Mississippi (12), and North Carolina and Michigan (11 each). The total to date is 3,898 , as compared with 3,160 for the same period last year and a 5 -year median of 2,951.

Of the total of 28,440 cases of measles reported, as compared with 24,790 last week and 21,511 for the 5 -year median, 15,395 , or 54 percent, occurred in the Middle Atlantic and East North Central areas. Increases occurred in 4 of the 6 States reporting more than 1,000 cases each-New Jersey, Michigan, Texas, and California. A total of 122,429 cases has been reported for the year to date, as compared with 20,173 for the corresponding period last year, and 207,252 in 1944. The latter figure is the largest number reported for the corresponding period of any of the past 5 years. The 5 -year median for the period is 136,443 .

Of the total of 37 cases of poliomyelitis reported for the week, as compared with 52 last week and a 5 -year median of 19 , California
reported 8, Texas 7, and Florida 3. The total to date, 443 cases, is more than reported for the corresponding period of any of the past 5 years.

The total of 202 cases of meningitis was the same number as reported last week. Of these, California reported 23, Texas 19, New York 17, Pennsylvania and Ohio 16 each, and Illinois 14. The cumulative total is 2,047 , as compared with 2,548 and 5,590 , respectively, for the corresponding periods of 1945 and 1944, and a 5 -year median of 2,548 .

Deaths registered during the week in 92 large cities of the United States aggregated 9,855 , as compared with 10,355 last week, 9,549 and 9,510 , respectively, for the corresponding weeks of 1945 and 1944, and a 3 -year (1943-45) average of 9,740 . The total to date is 103,879 , as compared with 97,466 for the same period last year.

Telegraphic morbidity reports from State health officers for' the week ended Mar. 9, 1946, and comparison with corresponding week of 1945 and 5-year median
In these tables a zero indicates a definite report, while leaders imply that, although none was reported, cases may have occurred.

${ }^{1}$ New York City only.
2 Period ended earlier than Saturday.

- Correction: Meningococcus meningitis, week ended Feb. 23, Rhode Island 1 case (instead of 0).

Telegraphic morbidity reports from State health officers for the week ended Mar. 9, 1946 and comparison with corresponding week of 1944 and 5-year median-Con.

[^6]Telegraphic morbidity reports from State health officers for the week ended Mar. 9, 1946, and comparison with corresponding week of 1945 and 5-year median-Con.

Division and State	Whooping cough			Week ended Mar. 9, 1946							
	Week ended-		$\begin{aligned} & \text { Me- } \\ & \text { dian } \\ & 1941- \\ & 45 \end{aligned}$	Dysentery			En-cephalitis, infectious	Rocky Mt. spotted fever	Tula remia	Typhus fever, endemic	$\begin{aligned} & \text { Un- } \\ & \text { du- } \\ & \text { lant } \\ & \text { fever } \end{aligned}$
	$\begin{gathered} \text { Mar. } \\ 9, \\ 1946 \end{gathered}$	$\begin{gathered} \text { Mar. } \\ 1045 \end{gathered}$		$\underset{\text { bic }}{\text { Ame- }}$	$\begin{array}{\|l} \text { Bacil } \\ \text { lary } \end{array}$	Un-specified					
NEW ENGLAND											
Maine	12	24	30	1							1
New Hampshire.		5	3								
Vermont..------	14	65	34								
Massachusetts.	146	134	197		8						
Rhode island Connecticut.	46 69	39 67	38 67								2
middLe ATLANTIC											
New York	220	261	361	5	7		2				3
New Jersey.	154	123	123	3		3					
Pennsylvania EAST NORTH CENTRAL	123	119	211				4				1
Ohio..--	104	125	¢150	1							
Indiana	19	10	17			--...-	1. 1				
Illinois.---7	104	147		2	-....-		3				6
Michigan ${ }^{2}$ -	123 75	147 66	164						1	1	2
West north central											
Minnesota.	9	20	59	1							5
Iowa....-	10	${ }_{14}^{2}$	23 14								
Missouri North Dakota	6	14	14								1
South Dakota.		1	6								3
Nebraska.		14	14								
Kansas.-	73	49	49								7
SOUTH ATLANTIC											
Delaware.-	3	2	2								
Maryland ${ }^{\text {a }}$ -	23	41	45			1					
District of Columbia	4 4	$\begin{array}{r}2 \\ 44 \\ \hline\end{array}$	74	1		12	1		2	1	
West Virginia.	31	33	33			12	1		2	1	
North Carolina.	55	95	122	5	3		2				
South Carolina	69	107	80	4	4						
Georgia.-----.	7	16.	17		4				4		5
Florida.-.-....--	15	18.	18	2	-----		1			7	
east south central											
Kentucky.	25	30	42								
Tennessee	36	37 19	37			1	2		1		2
Alabama---	11	19	22								2
Mississippi ${ }^{2}$									B	3	4
WEST SOUTH CENTRAL											
Arkansas.-	6	29	20	1	10				1		
Louisiana	10	5	3		2				1	3	2
Oklahoma	5	21.	20								
Texas.--	219	313	256	6	246	47			7	12	10
mountain											
Montana		5	6	1							
Idaho---	12	4	4								
W yoming	4	6	3					1			
Colorado	26	32	32		5						2
New Mexico.	18	8	17			2					
Arizona	21	21	20			15					1
Utah ${ }^{\text {a }}$	26	27	37								
Nevada.		,	6								
Pactic											
Washington..	37	26	35								
Oregon-.-	9	30	30								
California.	97	298	298	3	7		3			1	7
Total	2,111	2,614	3,911	37	297	81	19	1	24	40	66
Same week, 1945.	2,614			24	287	98	9	0	10	36	94
A verage, 1943-44.	2,814			48	244	78	11	${ }^{5} 0$	13	${ }^{3} 32$	
10 weeks; 1946...	18, 272			400	2,920	1,099	85	4	213	500	639
1945.	23, 430			270	5, 354	1,379	66	4	208	547	854
A verage. 1943-45.	26, 851		8.789	260	3,168	803	90	6^{4}	161	${ }^{6} 443$	

${ }^{2}$ Period ended earlier than Saturday.
Imported.
35-year median, 1941-45.

WEEKLY REPORTS FROM CITIES

City reports for week ended Mar. 2, 1946

This table lists the reports from 86 cities of more than 10,000 population distributed throughout the United States, and represents a cross section of the current urban incidence of the diseases included in the table.

City reports for week ended Mar. 2, 1946-Continued

[^7]City reports for week ended March 2, 1946-Continued

13-year average, 1943-45.
2 5-year median, 1941-45.
Dysentery, amebic.-Cases: Boston, 2; New York, 3; Detroit, 1; Minneapolis, 1: Baltimore, 1.
Dysentery, bacillary.-Cases: New York, 1; Detroit, 2; Tampa, 1; Los Angeles, 1.
Dysentery, unspecified.-Cases: Cincinnati, 1; San Antonio, 2.
Tularemia.-Cases: New York, 1; Memphis, 1.
Typhus fever, endemic.-Cases: Savannah, 1; New Orleans, 2; Dallas, 1; Houston, 1; Los Angeles, 1.
Rates (a nnual basis) per 100,000 population, by geographic groups, for the 86 cities in the preceding table (estimated population, 1943, 33,941,400)

PLAGUE INFECTION IN SAN BENITO COUNTY, CALIF.

Under date of February 28, 1946, plague infection was reported demonstrated on February 23 in squirrels, species not stated, taken in San Benito County, Calif., as follows: In tissue from a lot of 11 squirrels and from another lot of 5 squirrels shot 5 miles and 7 miles, respectively, east of Tres Pinos.

FOREIGN REPORTS

CANADA

Provinces-Communicable diseases-Week ended February 9, 1946.During the week ended February 9, 1946, cases of certain communicable diseases were reported by the Dominion Bureau of Statistics of Canada as follows:

Disease	Prince Edward Island	Nova Scotia	New Brunswick	$\begin{aligned} & \text { Que- } \\ & \text { bec } \end{aligned}$	Ontario	Manitoba	Sas-katchewan	$\begin{gathered} \text { Al- } \\ \text { berta } \end{gathered}$	British Columbia	Total
Chickenpox		10		101	271	28	36	43	77	566
Diphtheria.		9	6	16	9	1	1		1	43
Dysentery:										
Amebic.- Bacillary					40				2	40 6
German measles.		1		22	22			7	5	57
Influenza.		228			139	1			39	407
Measles.		43	14	293	1,286		4	9	39	1,688
Meningitis, meningococcus.		1	1	3	3				3	11
Mumps.				62	113	26	25	42	92	360
Poliomyelitis.				1	1					2
Scarlet fever--	2	6	5	112	80	14	4	6	25	254
Tuberculosis (all forms)..		3	6	72	45	10	20	2	26	184
Typhoid and paratyphoid fever.				5	1					6
Undulant fever				3						3
Venereal diseases:										
Gonorrhea		17	812	90 168	154	55 24	37 9	55 10	90 35	477
				127	39	2				167

WORLD DISTRIBUTION OF CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER

From medical officers of the Public Health Service, American consuls, International Office of Public Health, Pan American Sanitary Bureau, health section of the League of Nations, and other sources. The reports contained in the following tables must not be considered as complete or final as regards either the list of countries included or the figures for the particular countries for which reports are given.

CHOLERA

[C indicates cases; P, present]
Note.-Since many of the figures in the following tables are from weekly reports, the accumulated totals are for approximate dates.

Place	JanuaryDecember 1945	$\underset{1946}{ }$	February 1946-week ended-					
			2	9	16	23		
Burma ASIA								
Rangoon	2,865	1						
Ceylon: Trincomalee District	19							
China: ${ }^{3}$								
Hupeh Province.	129							
Kwangsi Province.	1. 266							
Kwantung Province	178							
Kweichow Province.	906							
Shensi Province....	149							
1 For the months of July and August 1945. ${ }^{2}$ For the period May 1 to Dec. 31, 1945. ${ }^{2}$ Cholera was also reported present during August in the following Provinces of China: Chekiang, Honan, Hunan, and Kansu.								

CHOLERA-Continued

[C indicates cases; \mathbf{P}, present]

Place	$\left\|\begin{array}{c} \text { January- } \\ \text { December } \\ 1945 \end{array}\right\|$	$\underset{1946}{\text { January }}$	February 1946-week ended-			
			2	9	16	23
AsIa-conti						
China-Continued Sikong Province.	113					
Szechwan Province	14, 748					
Chungking.....	8, 000					
Yunnan Province.	137					
India-........	268, 884					
Bombay Calcutta						
Cawnpore	5,298	69	38			
Chittagong	19	1				
Delhi	318					
Vizadras ---.-	53	2				
Vizagapatam Indochina: Cochinchina	$\stackrel{31}{8}$					
Thailand (Siam): Bangkok	P	-				

Plague
[C indicates cases; D, deaths; \mathbf{P}, present]

PLAGUE-Continued
 [C indicates cases; D, deaths, P, present]

${ }^{1}$ Includes 4 cases of pneumonic plague.
${ }^{2}$ Includes 7 suspected cases.
8 Includes 1 suspected case.
${ }^{4}$ For the period May 1-Dec. 31, 1945.
${ }^{5}$ Information dated July 5, 1945, stated that from April 1944 to May 1945, 85 deaths from plague had occurred in the mountainous region south of Kunming, China.
6 Includes 4 suspected cases.
7 Includes 3 suspected cases.
8 During the month of June 1945, plague infection in fleas was reported in Alberta Province. For the week ended July 28, 1945, plague infection was also reported in 6 pools of fleas in Alberta Province. For the week ended Aug. 11, 1945, 2 pools of plague-infected fleas were reported in Alberta Province, Canada.

- Includes 6 suspected cases.

10 Previously reported as a case, death occurring on June 2, 1945.
${ }^{11}$ Plague infection was also proved positive in a pool of 5 mice on Jan. 4, in a pool of fleas on Feb. 14, in a pool of 40 fleas on Mar. 14, and in a pool of 47 rats on Dec. 15, 1945.
12 Pneumonic plague.

SMALLPOX

[C indicates cases; P, present]

See footnotes at end of table.

SMALLPOX—Continued
[C indicates cases; \mathbf{P}, present]

[^8]
TYPHUS FEVER*

[C indicates cases; P, present]

Place

See footnotes at end of table.

TYPEUS PEVER-Continued

[C indicates cases; P present]

Place	$\begin{array}{\|l} \text { January- } \\ \text { December } \\ 1945 \end{array}$	${\underset{1946}{ }}_{J_{\text {January }}}$	February 1946-week ended-			
			2	9	16	23
south america-continued						
Paraguay	771	1				
Venezuela	144	13				
oreania						
	116	15				
	104	9			--	

*Reports from some areas are probably murine type, while others probably include both murine and louse-borne types.
${ }^{1}$ Reports cases as murine type.
${ }^{2}$ For the period Feb. 1-20, 1946.
${ }^{3}$ Includes imported cases.
4 For the period Jan. 1 to Sept. 1, 1945, between 8,000 and 10,000 cases of typhus fever were reported in Hungary.

YELLOW FEVER
[C indicates cases; \mathbf{D}, deaths]

AFRICA						
	113					
	23					
	1					
	31					
	44					
Ivory Coast:						
Gaous. Guiglo	1					
	2					
	31					
SOUTH AMERICA						
Bolivia:						
	1					
La Paz Department....----...........------	2					
Santa Cruz Department-------............-D		339				
Brazil: Goisz State						
	25					
	1					
British Guiana: Kwakwani.............................-C	1					
Colombia:						
	3					
Putumayo Commissary .-........................	1					
Santander de Norte Department.-.-..........-	19					
Peru:						
	3					
Junin Department	${ }^{6} 6$					
Venezuela:						
	1					
	3					
Tachira State \qquad	20			61		
Trujillo State Zulis State				1		
	8					----

[^9]X

[^0]: : Georgia, Kentucky, Missourl, New Mexico, North Dakota, Oklahoma, Tennessee, and W yoming.

[^1]: ${ }^{1}$ Rates are based on the following 40 States except for the omissions noted (records are continuous for the 40 States from 1926 on):

 New England: Maine, Massachusetts, Rhode Island, and Connecticut. Maine omitted, 1916; Rhode Island omitted, 1925.
 Middle Atlantic: New York, New Jersey, and Pennsylvania. New Jersey omitted, 1916, 1917; Pennsylvania omitted, 1924, 1925.
 East North Central: Ohio, Indiana, Illinois, Michigan, and Wisconsin. Michigan omitted, 1916-23; Wisconsin omitted, 1919.
 West North Central: Minnesota, Iowa, Missouri, North Dakota,Nebraska, and Kansas. Iowa omitted, 1916-23; Missouri omitted, 1916-23; North Dakota omitted, 1916-23; Nebraska omitted, 1916, 1917.
 South Atlantic: Delaware, Maryland, District of Columbia, Virginia, West Virginia, North Carolina, and Florida. Delaware omitted, 1916-23; Virginia omitted, 1921, 1922: West Virginia omitted, 1916-23; North Carolina omitted 1916, 1917, and 1922; Florida omitted, 1916, 1917.
 East South Central: Tennessee, Alabama, and Mississippi. Tennessee omitted, 1916-23; Mississippi omitted 1918.
 West South Central: Arkansas, Louisiana, and Oklahoma. Arkansas omitted, 1916-23; Oklahoma omitted, 1916-24.
 Mountain: Montana, Idaho, Wyoming, Colorado, Arizona, and Utah. Idaho omitted, 1916-25; Wyoming omitted, 1921; Colorado omitted, 1916-23; Arizona omitted, 1916-23; Utah omitted, 1916-24.
 Pacific: Washington, Oregon, California; Washington omitted, 1920.

[^2]: ${ }^{1}$ The following International List Titles were used: 61 (2) and (3), 1916-20; 24 and 71 (b), 1921-29; 18 and 79 (b), 1930-38; 6, 1939-43. Deaths for 1942 and 1943 are resident. Deaths for 1944 are from Notifiable Diseases (15).
 ${ }^{2}$ Rates are based on the following 40 States except for the omissions noted (records are continuous for the 40 States from 1928 on):

 Neur England: Maine, Massachusetts, Rhode Island, and Connecticut. Maine omitted, 1916; Rhode Island omitted, 1925.
 Middle Atlantic: New York, New Jersey, and Pennsylvania. New Jersey omitted, 1916, 1917; Pennsylvania omitted, 1924, 1925.
 East North Central: Ohhio, Indiana, Illinois, Michigan, and Wisconsin. Illinois omitted, 1916, 1917; Michigan omitted, 1916-23; Wisconsin omitted, 1919.
 West North Central: Minnesota, Iowa, Missouri, North Dakota, Nebraska, and Kansas. Iowa omitted, 1916-23; Missouri omitted, 1916-23; North Dakota omitted, 1916-23; Nebraska omitted, 1916-19.
 South Atlantic: Delaware, Maryland, District of Columbia, Vinginia, West Virginia, North Carolina, and Florida. Delaware omitted, 1916-23; Virginia omitted, 1921, 1922; West Virginia omitted 1916-24 North Carolina omitted, 1916, 1917; Florida omitted, 1916-18.
 East South Central: Tennessee, Alabama, and Mississippi. Tennessee omitted, 1916-23; Alabama omitted, 1916-24; Mississippi omitted, 1916-18.
 West South Central: Arkansas, Louisiana, and Oklahoma. Arkansas omitted, 1916-26; Louisiana omitted, 1916, 1917; Oklahoma omitted, 1916-27.
 Mountain: Montana, Idaho, Wyoming, Colorado, Arizona, and Utah. Idaho omitted, 1916-25; W yoming omitted, 1916-21; Colorado omitted, 1916-23; Arizona omitted, 1916-25; Utah omitted, 1916-24.
 Pacific: Washington, Oregon, California. Washington omitted, 1920; Oregon omitted, 1916, 1917.
 Because of the above selection of States the rates in this table may vary to a slight extent from similar rates published by Hedrich and others.

[^3]: ${ }^{1}$ See table 1, note 1, for International List titles.

[^4]: ${ }^{2}$ Reported cases of cerebrospinal meningitis for October and November of the year 1945 have been received since this article was submitted. For the entire country they show a seasonal increase in the disease which is on a general level somewhat above the 5 -year median but well below the level of last year. The incidence in each section also, during October and November 1945, is consistently lower than last gear.

[^5]: ${ }^{1}$ From the Industrial Hygiene Research Laboratory, National Institute of Health.

[^6]: 2 Period ended earlier than Saturday.
 ${ }^{2}$ Including paratyphoid fever reported separately, as follows: Massachusetts 2; New York 1; New Jersey 1; Georgia 1; Florida 1; Arkansas 1; Louisiana 1; Oregon 1.
 borrection: Poliomyelitis, week ended Mar. 2, Florida 18 cases (instead of 17); week ended Mar.9,

[^7]: *Delayed report, Atlanta, 5 cases in prior weeks.

[^8]: ${ }^{1}$ Includes cases of alastrim.
 2 For the period Feb. 1-10, 1946.
 8 For the period Feb. 1-20, 1946.
 4 Includes 3 imported cases.
 6 For the week ended June 30,1945 , cases of virulent smallpox were reported in the Union of South Africa.
 6 For the period May 1 to Dec. 31, 1945.
 7 Includes some cases of chickenpox.
 Includes 2 imported cases.

 - Imported cases.
 ${ }_{11}$ Includes 1 imported case.
 11 For the month of February

[^9]: ${ }^{1}$ Includes 4 suspected cases.
 2 Includes 2 suspected cases.
 4 Includes 1 suspected case.
 ${ }^{5}$ Includes 3 suspected cases.

 - Reported as a case.
 ${ }^{2}$ Suspected.

